站长网 大数据 怎么为数据科学家提供无需复杂ETL的数据分析

怎么为数据科学家提供无需复杂ETL的数据分析

尽管有必要,但ETL需要大量的编码,专门知识和维护。除了这项工作对于数据科学家来说是耗时的之外,并不是所有的数据科学家都具有开发ETL的经验。很多时候,这项工作将落在数据工程团队上,这些团队忙于更大的图片项目以引入基础数据层。 这并不总是与数据

尽管有必要,但ETL需要大量的编码,专门知识和维护。除了这项工作对于数据科学家来说是耗时的之外,并不是所有的数据科学家都具有开发ETL的经验。很多时候,这项工作将落在数据工程团队上,这些团队忙于更大的图片项目以引入基础数据层。
 
这并不总是与数据科学家的需求保持一致,数据科学家的需求可能会让拥有业务所有者的企业希望快速地进行信息和分析。等到数据工程团队有时间提取新的数据源可能不是一个好选择。
 
这就是为什么在过去的几年中开发了几种解决方案来减少数据科学家为获取所需数据而需要进行的工作量的原因。尤其是以数据虚拟化,自动ETL和无代码/低代码解决方案的形式。
 
自动化的ETL和数据仓库
 
尽管ETL本身是一个自动化过程。他们需要大量的手动开发和维护。
 
这导致了Panoply之类的工具的普及,该工具提供了易于集成的自动ETL和云数据仓库,可以与许多第三方工具(如Salesforce,Google Analytics和数据库)同步。使用这些自动集成,数据科学家可以快速分析数据,而无需部署复杂的基础架构。
 
无需Python或EC2实例。只需单击几下。然后,在大致了解您打算引入团队中的数据类型之后,便可以拥有一个填充的数据仓库。
 
这些自动化的ETL系统非常易于使用,通常只需要最终用户设置数据源和目标即可。从那里可以将ETL设置为在特定时间运行。全部没有任何代码。

本文来自网络,不代表站长网立场,转载请注明出处:https://www.tzzz.com.cn/html/shuju/2021/1212/36838.html

作者: dawei

【声明】:站长网内容转载自互联网,其相关言论仅代表作者个人观点绝非权威,不代表本站立场。如您发现内容存在版权问题,请提交相关链接至邮箱:bqsm@foxmail.com,我们将及时予以处理。
联系我们

联系我们

0577-28828765

在线咨询: QQ交谈

邮箱: xwei067@foxmail.com

工作时间:周一至周五,9:00-17:30,节假日休息

返回顶部