站长网 传媒 为何RL泛化如此难 伯克利博士从认知POMDP、隐式部分可观察解读

为何RL泛化如此难 伯克利博士从认知POMDP、隐式部分可观察解读

当今强化学习(RL)的问题很多,诸如收敛效果不好。在偏弱的实验环境里,模型测试结果看起来尚可,许多问题暴露得不明显,但大量实验已经证明深度 RL 泛化很困难:尽管 RL 智能体可以学习执行非常复杂的任务,但它似乎对不同任务的泛化能力较差,相比较而言

当今强化学习(RL)的问题很多,诸如收敛效果不好。在偏弱的实验环境里,模型测试结果看起来尚可,许多问题暴露得不明显,但大量实验已经证明深度 RL 泛化很困难:尽管 RL 智能体可以学习执行非常复杂的任务,但它似乎对不同任务的泛化能力较差,相比较而言,监督深度网络具有较好的泛化能力。
 
有研究者认为,对于监督学习来说,发生一次错误只是分类错一张图片。而对于 MDP(马尔可夫决策过程)假设下的 RL,一次识别错误就会导致次优决策,甚至可能一直错误下去,这也是 RL 在现实世界没法用的根源。
 
为什么强化学习的泛化能力从根本上来说很难,甚至从理论的角度来说也很难?来自加州大学伯克利分校的博士生 Dibya Ghosh 等研究者共同撰文解释了这一现象,文章从认知 POMDP(Epistemic POMDP)、隐式部分可观察(Implicit Partial Observability)两个方面进行解释。论文共同一作 Dibya Ghosh 的研究方向是使用强化学习进行决策。之前,他曾在蒙特利尔的 Google Brain 工作。

本文来自网络,不代表站长网立场,转载请注明出处:https://www.tzzz.com.cn/html/xinwen/chuanmei/2021/1130/31510.html

作者: dawei

【声明】:站长网内容转载自互联网,其相关言论仅代表作者个人观点绝非权威,不代表本站立场。如您发现内容存在版权问题,请提交相关链接至邮箱:bqsm@foxmail.com,我们将及时予以处理。
联系我们

联系我们

0577-28828765

在线咨询: QQ交谈

邮箱: xwei067@foxmail.com

工作时间:周一至周五,9:00-17:30,节假日休息

返回顶部