副标题#e#
缓存的使用可以说无处不在,从应用请求的访问路径来看,用户 user -> 浏览器缓存 -> 反向代理缓存-> WEB服务器缓存 -> 应用程序缓存 -> 数据库缓存等,几乎每条链路都充斥着缓存的使用,缓存最直白的解释就是“用空间换时间”的算法。缓存就是把一些数据暂时存放于某些地方,可能是内存,也有可能硬盘。总之,目的就是为了避免某些耗时的操作。我们常见的耗时的操作,比如数据库的查询、一些数据的计算结果,或者是为了减轻服务器的压力。其实减轻压力也是因查询或计算,虽然短耗时,但操作很频繁,累加起来也很长,造成严重排队等情况,服务器抗不住。
distributed-tools 组件提供了一个 CacheEngine 接口,基于 Tair、Redis 分别有不同的实现,具体 CacheEngine 定义如下:
public String get(String key);
/**
* 获取指定的key对应的对象,异常也会返回null
*
* @param key
* @param clazz
* @return
*/
public <T> T get(String key, Class<T> clz);
/**
* 存储缓存数据,忽略过期时间
*
* @param key
* @param value
* @return
*/
public <T extends Serializable> booleanput(String key, T value);
/**
* 存储缓存数据
*
* @param key
* @param value
* @param expiredTime
* @param unit
* @return
*/
public <T extends Serializable> booleanput(String key, T value, int expiredTime, TimeUnit unit);
/**
* 基于key删除缓存数据
*
* @param key
* @return
*/
publicbooleaninvalid(String key);
get 方法针对 key 进行查询, put 存储缓存数据, invalid 删除缓存数据。
限流
在分布式系统中,尤其面对一些秒杀、瞬时高并发场景,都需要进行一些限流措施,保证系统的高可用。通常来说限流的目的是通过对并发访问/请求进行限速,或者一个时间窗口内的的请求进行限速来保护系统,一旦达到限制速率则可以 拒绝服务(定向到错误页或告知资源没有了)、排队 或 等待(比如秒杀、评论、下单)、降级(返回托底数据或默认数据,如商品详情页库存默认有货)。
常见的一些限流算法包括固定窗口、滑动窗口、漏桶、令牌桶,distributed-tools 组件目前基于计数器只实现了固定窗口算法,具体使用方式如下:
/**
* 指定过期时间自增计数器,默认每次+1,非滑动窗口
*
* @param key 计数器自增key
* @param expireTime 过期时间
* @param unit 时间单位
* @return
*/
publiclongincrCount(String key, int expireTime, TimeUnit unit);
/**
* 指定过期时间自增计数器,单位时间内超过最大值rateThreshold返回true,否则返回false
*
* @param key 限流key
* @param rateThreshold 限流阈值
* @param expireTime 固定窗口时间
* @param unit 时间单位
* @return
*/
#p#副标题#e#
publicbooleanrateLimit(final String key, finalint rateThreshold, int expireTime, TimeUnit unit);
基于 CacheEngine 的 rateLimit 方法可以实现限流, expireTime 只能设定固定窗口时间,非滑动窗口时间。
另外 distributed-tools 组件提供了模板 RateLimitTemplate 可以简化限流的易用性,可以直接调用 RateLimitTemplate 的 execute 方法处理限流问题。